ON THE MECHANISM OF THE ADDITION OF DITHIANYLIDENE ANIONS TO CYCLIC \(\alpha \beta - \text{UNSATURATED KETONES} \)

Frederick E. Ziegler,* Utpal R. Chakraborty, and Ronald T. Wester

Sterling Chemistry Laboratory

Yale University, New Haven, CT 06511

Abstract: The high diastereoselectivity in the 1,4-addition of dithianylidene anions to α,β -unsaturated ketones is demonstrated to proceed through an alkoxy-Cope rearrangement.

We have previously reported that dithianylidene anions undergo 1,4-addition to cyclic α , β -unsaturated ketones in aprotic media. ^{1a} In the particular case of lithium anion <u>1a</u> (in THF), when treated with 2-methylcyclopentenone, the principal stereoisomer was shown to be the 1,4- γ adduct <u>2a</u>. ^{1b} We have examined this reaction in detail using the dithianylidene anion <u>1b</u> and cyclopentenone to ascertain the factors controlling the high diastereoselection in the 1,4- γ addition process.

Crotonaldehyde (>95% E-isomer) was converted into its dithiane $(HS(CH_2)_3SH, BF_3 \cdot Et_20, HOAc/CHCl_3, -30^{\circ}$ to 25°C, 4h, 85%), providing an 88/12 (E/Z) mixture of isomers. Metalation (0.88 equiv. n-BuLi-hexane, THF, 0°C, 2h) of the mixture, in an attempt to selectively deprotonate the E-isomer, provided a 94/6 (E/Z) mixture of anions as determined by α -deuteration (D₂0) of the anions and nmr integration of the residual dithiane methine protons vs. the vinylic protons.

Addition of 1 equiv. (based upon anion) of cyclopentenone at -78° C to the anions afforded three characterizable addition products $[1,2_{-\alpha}(3),1,4_{-\gamma}(2b,c),1,4_{-\alpha}(4)]^2$ and protonated dithianes (Table). The ratio of $1,2_{-\alpha}:1,4_{-\gamma}:1,4_{-\alpha}$ products was shown (VPC) in an independent experiment conducted at -78° C, to be invariant with time (15 sec., 1h, 2h, 3h), demonstrating the kinetic nature of the mixture. When the reaction mixture was allowed to warm from -78° C to 25° C, the ratio of protonated dithianes (from deprotonation

$$\begin{array}{c} R_2 \\ R_3 \\ Li^+ \\ S \end{array}$$

$$R_1 = R_2 = CH_3$$
; $R_3 = H$

$$1b$$
, $R_1 = R_3 = H$; $R_2 = CH_3$

$2a$
, $R_1 = R_3 = R_4 = CH_3$; $R_2 = H$

$2b$
, $R_1 = R_2 = R_4 = H$; $R_3 = CH_3$

$2d$
, R_1 =H; R_2 , R_3 =H, CH_3 ; R_4 = CH_3

5a, $R_1 = H$; $R_2 = CH_3$ 5b, $R_1 = CH_3$; $R_2 = H$

Table:

	<u>Dithiane</u>							
Entry	Temp	Time	<u>Standard</u> ^C	<u>E</u>	<u>Z</u>	<u>1,2-a</u>	1,4-Y	1,4-α
1	-78°C	1h ^a	100	65	17	80	21 ^d	5
2	0°C	1h	100	58	15	71	27	4
3	0°C	2h ^b	100	47	12	63	37 ^e	4
4	25°C	12h	100	60	17	0	89 ^f	4

a) then -78°C to 0°C over 0.5h, b) elapsed time at 0°C, c) Ph_2S , d) 2b/2c (70/30), e) 2b/2c, (80/20), f) 2b/2c (90/10).

of cyclopentenone) to adducts remained essentially constant as did the ratio of dithianes and adducts to the internal standard (Ph₂S). The warming process transformed the 1,2adduct into the 1,4-y isomer. A dissociation-recombination mechanism for the interconversion would require a repartitioning of the dithiane anion and cyclopentenone between deprotonation and addition products, thereby increasing the amount of the dithianes at the expense of the adducts. When one equiv. of HMPA was added to the anion 1b,c in THF prior to the addition of cyclopentenone at -78°C, the 1,4- α adduct was the principal product of kinetic addition. Treatment of the reaction mixture of entry 1 (i.e., the resultant anions) with 1 equivalent of HMPA, failed to generate additional 1,4-a adduct upon warming. If dissociation had occurred in the presence of HMPA, an increase in the amount of $1,4-\alpha$ adducts would have been anticipated. Only the $1,2-\alpha$ to $1,4-\gamma$ isomerization occurred. In another experiment, addition of the 2-methylcyclopentenone to the reaction mixture prior to the warming process failed to generate any crossover 1,4- γ adduct 2d. These three experiments support an intramolecular alkoxy-Cope rearrangement as the operative ${\sf mechanism.}^3$ Since there is a strong preference for a chairlike transition state for such rearrangements. 4 the warming process should increase the amount of the 1,4- γ adduct $\underline{2b}$ derived from the chairlike transition state beyond the amount present in the kinetic mixture. A sample of the kinetic (entry 1) $1.4-\gamma$ isomers was collected (VPC) and was shown to be a 70/30 mixture of 2b/2c (270 MHz nmr, integration of the vinylic hydrogen). Based upon the intercedence of a chairlike rearrangement, the ratio of <u>2b/2c</u> at 0°C (entry 3) was 80/20 (calculated 83/17); at 25°C, 90/10 (calculated 94/6).5

The structure of $\underline{2b}$ was confirmed in the following way. Ozonolysis $(0_3, \text{CH}_2\text{Cl}_2/\text{CH}_3\text{OH}, -78^\circ\text{C})$ of a 90/10 mixture of $\underline{2b/2c}$ followed by treatment of the intermediate methoxy hydroperoxide with $\text{Ac}_2\text{O/Et}_3\text{N}$ gave rise to a 90/10 mixture of ketoesters $\underline{5}$. The major component was identical (270 MHz nmr) with the methyl ester $\underline{5a}$ formed by the addition of 1-diethylamino-1-propyne 6 to cyclopentenone followed by acid hydrolysis and subsequent diazomethane esterification. 7

Haynes has noted that the lithium anions of allyl alkyl (and aryl) sulfides give

principally 1,2- α and 1,2- γ addition products with cyclopentenone at -78°C in THF.⁸ It is not unreasonable to assume that these adducts would undergo rearrangement to 1,4-adducts at ambient temperature in light of the present results and the observations of Evans concerning the alkoxy-Cope rearrangement of substrates bearing thiophenyl substituents.⁹

ACKNOWLEDGMENTS: This work was supported by the Institute of General Medical Sciences, National Institutes of Health (GM 29468). High field NMR spectra (270, 500 MHz) were recorded at the Northeast Regional NMR Facility, Department of Chemistry, Yale University, which is supported by grant CHE-7916210 from the Chemistry Division of the National Science Foundation.

REFERENCES AND NOTES:

- a) F.E. Ziegler ad C.C. Tam, Tetrahedron Letters, 4717 (1979); b) F.E. Ziegler and J.-M. Fang, J. Org. Chem., 46, 825 (1981). For a full account of this work, see F.E. Ziegler, J.-M. Fang, and C.C. Tam, J. Am. Chem. Soc., in press.
- 2. $\underline{2b}$: nmr (500 MHz) & 1.02 (3H, d, J = 6.6 Hz, CH₃), 5.76 (1H, d, J = 9.9 Hz, vinyl H); ms (70eV, m/e (rel. intensity)) 242 (M⁺, 10), 159 (C₇H₁₁S₂⁺, 100), $\underline{2c}$: nmr (500 MHz) & 1.03 (3H, d, J = 6.6 Hz, CH₃), 5.74 (1H, d, 9.9 Hz, vinyl H); ms (70eV, m/e (rel. intensity)) 242 (M⁺, 36), 159 (C₇H₁₁S₂⁺, 100), $\underline{3}$: nmr (500 MHz) & 1.86 (2H, d, J = 6.6, 1.5 Hz, CH₃), 5.58 (1H, d, J = 15.0 Hz, E-olefin vinyl H), 5.85 (2H, m, Z-olefin vinyl H), 6.07 (1H, dq, J = 15.0, 7.0 Hz, E-olefin vinyl H), and 6.02 (2H, m, Z-olefin vinyl H); ms (70eV, m/e (rel. intensity)) 225 (M⁺-17, 13), 224 (M⁺-18, 100). $\underline{4}$: nmr (270 MHz) & 1.82 (3H, dd, J = 6.7, 1.4 Hz, CH₃), 5.45 (1H, dq, J = 15.1, 1.6 Hz, vinyl H), and 5.96 (1H, dq, J = 15.1, 6.5 Hz, vinyl H); ms (70eV, m/e (rel. intensity)) 242 (M⁺, 36), 159 (C₇H₁₁S₂⁺, 100).
- D.A. Evans and A.M. Golob, J. Am. Chem. Soc., <u>97</u>, 4765 (1975).
- 4. D.A. Evans and J.V. Nelson, J. Am. Chem. Soc., <u>102</u>, 774 (1980).
- 5. At 0°C, $\frac{2b}{2c} = 21(0.7) + (80-63)/21(0.3) = 5.03$; at 25°C, $\frac{2b}{2c} = 21(0.7) + 80/21(0.3) = 15.03$.
- 6. We thank Professor Stork (Columbia) for a sample of the ynamine.
- 7. J. Ficini and A. Krief, Tetrahedron Lett., 1397 (1970).
- 8. M.R. Binns and R.K. Haynes, J. Org. Chem., <u>46</u>, 3790 (1981).
- 9. D.A. Evans, D.J. Baillargeon, and J.V. Nelson, J. Am. Chem. Soc., <u>100</u>, 2242 (1978).

(Received in USA 13 May 1982)